Do encoding and prediction compete or cooperate?

Craig Poskanzer, Hannah Tarder-Stoll, Raheema Javid & Mariam Aly

Incorrect

Introduction

The hippocampus alternates between states that prioritize encoding new memories and states that prioritize retrieving existing memories to support prediction. 1, 2, 3, 4

Encoding and prediction are computationally at odds.⁵

Do encoding and prediction compete at a behavioral level or do they cooperate?

Approach: Manipulate prediction distance and uncertainty to observe if there are trade-offs with encoding

Task Overview

Memory test for trial unique cue images

Experiment 1———

Correct

prediction distance

Experiment 2

Prediction Accuracy

Prediction accuracy was worse for uncertain options (B1 vs. B2; E1 vs. E2) but otherwise comparable across conditions; memory encoding did not vary by prediction uncertainty

Results

Better encoding when prediction was successful

Costs to both prediction and encoding with increasing prediction distance

Prediction uncertainty (not shown) did not interact with the effects of prediction distance

Conclusions

Further reaching predictions are less accurate and slower

Both encoding and prediction are worse for further reaching predictions

Encoding and prediction may be cooperative rather than competitive

> 1. Sherman and Turk-Browne (2020), PNAS 3. Hasselmo et al. (2002), Neural Computation 5. O'Reilly and McClelland (1994), Hippocampus Funding: NSF CAREER Award (BCS-1844241) to M.A

2. Duncan et al. (2012), Science 4. Hasselmo (2005), Hippocampus