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The brain hierarchically represents the past
and future during multistep anticipation

Hannah Tarder-Stoll 1,2 , Christopher Baldassano 1,4 & Mariam Aly 1,3,4

Memory for temporal structure enables both planning of future events and
retrospection of past events.We investigated how the brainflexibly represents
extended temporal sequences into the past and future during anticipation.
Participants learned sequences of environments in immersive virtual reality.
Pairs of sequences had the same environments in a different order, enabling
context-specific learning. During fMRI, participants anticipated upcoming
environments multiple steps into the future in a given sequence. Temporal
structure was represented in the hippocampus and across higher-order visual
regions (1) bidirectionally, with graded representations into the past and
future and (2) hierarchically, with further events into the past and future
represented in successively more anterior brain regions. In hippocampus,
these bidirectional representations were context-specific, and suppression of
far-away environments predicted response time costs in anticipation. Toge-
ther, this work sheds light on howwe flexibly represent sequential structure to
enable planning over multiple timescales.

Memory allows us to use past experience to generate expectations
about the future. Integration of past information to predict future
events enables efficient planning and flexible behavior in complex
environments1–4 and has been proposed to be a primary function of
memory systems5 and of the brain itself6,7. For predictions to usefully
impact behavior, they should be represented on multiple timescales,
allowing us to anticipate not just immediately upcoming events but
also events further in the future. Furthermore, predictions that are
relevant for the current context should be flexibly prioritized over
those that are less relevant. For example, when riding the subway, it
would be useful to anticipate multiple stations ahead on the relevant
line, but we need not anticipate upcoming stops on other lines passing
through the same stations. Such context-specific prediction may be
supported by leveraging memories of past stops, which contextualize
where we are in the present. Here, we aimed to test three central
hypotheses. First, that the brain will flexibly anticipate events at mul-
tiple timescales in the future; second, that the future and the past will
be represented simultaneously in the same brain regions; and third,
that anticipatory representations will be prioritized for events that are
contextually relevant.

To test these hypotheses, we drew on prior research showing
anticipatory signals across the brain, particularly in memory and sen-
sory systems5,8–12. For example, predictions about upcoming items or
locations in a sequence are represented in the visual cortex13–16 and
hippocampus17–21, suggesting coordination between these regions in
memory-based prediction of visual stimuli16. Although earlier research
on prediction typically focused on one or a few brain regions13,15–17,20

and predictions about immediately upcoming events13,16,20, more
recent work has shown that the brain represents anticipatory signals at
multiple timescales simultaneously, with shorter timescales of pre-
diction inmore posterior regions and successively longer anticipatory
timescales in progressively more anterior regions12,22. For example,
during repeated viewing of a movie clip, posterior regions like the
visual cortex primarily represent the current moment, while progres-
sively more anterior regions represent upcoming events successively
further into the future12. This past work has also highlighted the insula
as a brain region that shows particularly far-reaching predictions12

perhaps due to its role in generating social predictions during natur-
alistic events23. These findings of multistep anticipatory signals are
generally consistent with computational theories that the brain builds
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models of theworld that cache temporal information about successive
events, with different predictive timescales in different brain regions
(i.e., multi-scale successor representations22,24).

This research onmultiscale anticipation in the brain complements
earlier work showing hierarchical representations of past states25.
Mirroring the predictive hierarchy for future states12,22, information
from the past lingers in the brain during ongoing experience, with
shorter timescales of past information represented in posterior
regions and longer timescales in anterior regions25–29. In the hippo-
campus specifically, temporal coding in the form of sequence reacti-
vation can extend into the past or the future30–33. Furthermore, the
brain’s representations of the past and future can be flexibly modu-
lated based on task demands34, with past and future states represented
distinctly from current states in the hippocampus35. Although this
work suggests that the brain may represent both anticipated and past
events, these prior studies did not test whether forward and backward
representations of temporally extended structure existed simulta-
neously in the same brain regions. Such bidirectional representations
would accord with temporal context models that propose that events
experienced nearby one another come to be associated with similar
representations, such that the retrieval of a given item can be a strong
cue for both preceding and subsequent items36,37. We therefore
examined whether the brain contains bidirectional representations of

the past and future, with the scale of these representations varying
systematically across the brain.

For the brain’s representations of temporal structure to be
adaptive for behavior, they should flexibly change depending on
context. Recent work in humans has shown context-specific patterns
of activity in the hippocampus during goal-directed planning of future
trajectories, suggesting that anticipation of temporally structured
experience is specific to the upcoming items in a given context38.
However, it remains unknown whether contextual modulation of
temporal structure representations is specific to planning trajectories
in the forward direction or if associationswith preceding items are also
activated in a context-specific way. If bidirectional representations
help disambiguate overlapping contexts – which may overlap in the
future, the past, or both – then context-specific representations of
both past and future states would be useful in planning trajectories
within a context.

In the present study, we investigated how context-specific tem-
poral structure is represented in the brain during a novel multistep
anticipation task. Participants learned, in immersive virtual reality, four
temporally extended sequences of eight environments each (Fig. 1).
Critically, pairs of sequences (Green Path vs. Blue Path) contained the
same environments in a different order, requiring individuals to flex-
ibly anticipate environments based on the current sequence context.

a

c Green Path

1 2 3 4 5 6

1 24 7 5 8

Blue Path

b

On a trip to New York I went to 
central park and then a museum

The museum had an exhibit 
about a futuristic home

Fig. 1 | Sequence structure and behavioral training. a Sequence structure. Par-
ticipants learned sequences of eight environments, indicated by the gray nodes.
The green path and the blue path consisted of the same environments in a different
order. The sequences were constructed to be as distinct as possible: for each
environment the two preceding and two succeeding environments were different
across the sequences. Participants learned four sequences in total: one green and
blue path with a set of eight environments, and another green and blue path with a
different set of eight environments. Only one green and one blue path are depicted
here for illustrative purposes. b Story Generation. To learn the sequence of envir-
onments, participants generated stories for each path to link the environments in

order. Participants were told to link the final environment back to the first envir-
onment to create a loop. c Virtual Reality Training. Participants then explored the
environments in immersive virtual reality in the green path order and the blue path
order while rehearsing their stories. In a given environment, a green and blue
sphere would appear. These spheres, when touched, teleported the participant to
the next environment in the corresponding (green or blue) sequence. Participants
then recalled the order of each of the four sequences (not shown). Environment
images are screenshots of 3D environments created in the game engine Unity from
assets available for commercial use.
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Sequences were circular, such that environments were temporally
predictable multiple steps into the future and the past regardless of
location in the sequence. This allowed us to test whether temporal
structure in both the prospective and retrospective direction is auto-
matically represented in the brain even if only future states are task-
relevant.

Following sequence learning, participantswere scannedwith fMRI
as they completed an Anticipation Task, in which they anticipated
upcoming environments one to four steps into the future in a given
(cued) sequence (Fig. 2). Following the Anticipation Task, participants
completed a Localizer Task in which we obtained template patterns of
brain activity for eachenvironment (Fig. 3).Weused these templates to
conduct multivoxel pattern similarity analyses in visual cortex, hip-
pocampus, insula, and across the brain. Specifically, while participants
viewed a given cue environment and attempted to anticipate upcom-
ing environments in the Anticipation Task, we looked for multivoxel
evidence of surrounding environments in the sequence. Using this
approach, we determined the extent to which temporal structure was
(1) represented in a graded and bidirectional manner, with simulta-
neous representations of future and past environments; (2) repre-
sented in a hierarchical fashion among lower and higher order brain
regions, with further-reaching representations in higher-order regions;
and (3) modulated by context, with prioritized representations for the
cued vs uncued sequence.

Results
Anticipation Task Performance
Participants performed effectively on the Anticipation Task (Fig. 2a),
correctly choosing the closer of the two probe images, relative to the
cued image and path, 86.86% of the time (sd = 0.08), which was sig-
nificantly higher than the chance performance of 50% (t(31) = 61.08,
p <0.00001). There was a trend toward higher accuracy in Map A (i.e.
the first learned map) compared to Map B (beta = −0.283, 95% CI =
[−0.576, 0.001], p =0.058). Accuracy did not vary by path (Green vs
Blue, beta = −0.124, 95% CI = [−0.458, 0.209], p = 0.464), nor was there
a map by path interaction (beta = 0.268, 95% CI = [−0.274, 0.81],
p =0.333). Response times on the Anticipation Task were not sig-
nificantly influenced by map (beta = 0.029, 95% CI = [−0.014, 0.072],
p =0.185), path (beta = 0.038, 95% CI = [−0.009, 0.085], p =0.127), or
their interaction (beta = −0.052, 95% CI = [−0.134, 0.029], p =0.209).

We next determined how performance on the Anticipation Task
varied by steps into the future (i.e. how many steps the correct probe
was from the cue image on the cued path; also see ref. 39). Steps into
the future had a trending impact on accuracy (beta = −0.15, 95% CI =
[−0.33, 0.027], p =0.096; Fig. 2b), with an average difference in accu-
racy of 3.9% between one-step and four-step trials. Steps into the
future robustly impacted response time (beta = 0.13, 95% CI = [−0.103
0.149], p <0.000001; Fig. 2b). Responses were on average 126ms
slower for each step into the future, with an average difference of

Green

Cue
Blank Screen

Probe

3s
5-9s 3s

+
3-8s

ITI

a

b ***

Fig. 2 | Anticipation task and behavioral performance. a Anticipation Task.
Participants returned one day after behavioral training and completed the Antici-
pation Task inside the MRI scanner. Participants were cued with a 2D image of an
environment from one of the sequences along with a path cue (Green or Blue) for
3 s. They then sawablank screen for a variabledurationof 5 to9 sduringwhich they
were told to anticipate upcoming environments. Participants were then probed
with two images of upcoming environments and had 3 s to indicate which of the
two environments was coming up sooner in the cued sequence, relative to the cue
image. The correct answer could be 1 to 4 steps away from the cue image.

b Behavioral Performance. Participants accurately anticipated upcoming environ-
ments in the cued sequence. Accuracy did not significantly differ across steps into
the future (left). Response time, however, was significantly slower for further steps
into the future (right). Pale gray lines indicate data for individual participants; the
black line is the group mean. Source data are provided as a Source Data file. N = 32
participants. Statistical tests are based on a generalized linear mixed effects model
(left) and a linear mixed effects model (right); significance threshold is two-tailed
p < 0.05; *** p < 2.2e-16.
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380ms between one-step and four-step trials. Together, this suggests
that participants performed accurately on the Anticipation Task, but
were slower to anticipate upcoming environments that were further
into the future.

Bidirectional and graded representations of temporal structure
in hippocampus
For our MRI analyses, we first created conjunction ROIs by selecting
voxels within early visual cortex (V1-4), hippocampus, and insula that
reliably responded to distinct environments in the Localizer Task
(Fig. 3a–c). Next, we obtained the across-participant multivoxel pat-
tern of brain activity for each environment within each of our ROIs
(Fig. 3d). To investigate neural representations of temporal structure
during multi-step anticipation, we calculated pattern similarity
between (1) multivoxel patterns of brain activity evoked during the
Anticipation Task for each trial type (cue and path combination) for
each participant and (2) the multivoxel patterns of brain activity
evoked during the Localizer Task, averaged across the remaining
participants, for each environment on the same map (Fig. 4a; see
Methods). We then ordered the resulting correlation values in the
sequence of the cued path with the cued environment in the center,
successors following the cue to the right of the center, and pre-
decessors to the left of the center (Fig. 4a; see Methods). Importantly,
because the order of environments in the sequences was randomized
across participants, the across-participant multivoxel pattern of
activity during the Localizer Task cannot include information about

successors for individual participants’ sequences, resulting in a rela-
tively pure measure of environment representations. Thus, this ana-
lysis allows us to determine the extent to which our regions of interest
represented upcoming or preceding environments during the Antici-
pation Task, using activity pattern “templates” for each environment
that were constructed to remove information about sequence
structure.

We examined whether the sequence order for the cued path was
reflected in the brain’s representations during the Anticipation Task.
We developed an analysis approach that allowed us to: 1) detect
representations of past and future environments; 2) test whether such
representations were graded as a function of distance and specific to
the task-relevant context; and 3) determine if these representations
were hierarchically organized across the brain. Our approach involved
fitting an asymmetrical Gaussian curve to the pattern similarity values
arranged following the order of the cued path (see Methods). The
Gaussian similarity model has four parameters: amplitude, asymptote,
and forward and backward width (σ) (Fig. 4b). The amplitude of the
curve indicates the degree to which a brain region is representing the
cue environment while it is on the screen. The forward and backward
widths (σ) of the curve indicate how similarity to neighboring envir-
onments falls off with the number of steps in the forward and back-
ward directions. Wider (vs. narrower) widths indicate that the brain
region represents environments that are further away. If a brain region
has a wide forward width but a narrow backward width, this
indicates a bias towards representing upcoming environments,
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Fig. 3 | Template brain activity patterns for each environment. a Localizer Task.
Participants completed a Localizer Task inside the MRI scanner at the end of the
session. Participants were cued with a 2D image of an environment from the
experiment for 1 second. They then saw a blank screen for 5 s during which they
were told to imagine being inside the environment in VR. Next, they saw images of
the environment from different angles for 4 s and were given 3 s to rate how well
their imagination matched the actual images of the environment. b Across-
participant analysis for identifying voxels that reliably discriminate between
environments. We measured the activity of each voxel in each participant during
the Localizer Task (combining the cue, blank screen, and panorama phases) for
each of the 16 environments. Next, we obtained the Pearson correlation (r) in each
voxel between a participant’s (e.g., P1’s) responses to the 16 environments and the
16 average responses in the remaining participants (e.g., P2-P32). Averaging across

all choices of the left-out participant, this yielded an across-participant reliability
score for each voxel. c Whole brain map of voxels that reliably discriminate
between environments. We only included voxels in subsequent analyses if they had
anacross-participant environment reliability value of0.1 or greater andwerepart of
a cluster of at least 10 voxels. d Environment representations in ROIs. In early visual
cortex (left), hippocampus (middle), and insula (right), we selected the
environment-reliable voxels (red) within each anatomically or functionally defined
ROI (white). We then confirmed that the analysis successfully identified across-
participant patterns of activity within these conjunction ROIs, i.e., activity patterns
that were more correlated for the same environment than for different environ-
ments. Bars indicate average pattern similarity. Points indicate the pattern simi-
larity between each participant’s activity pattern with the mean of all other
participants, averaged across all environments. N = 32 participants.
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indicating anticipation, over retrospective representations of preced-
ing environments. The asymptote is an indication of the representa-
tions of environments that are not captured by the width of the
Gaussian; if the asymptote is lower than baseline (defined as pattern
similarity between the cue screen activity patterns and all environment
templates from theothermap, henceforth referred to as different-map
baseline), this suggests that these environments are suppressed rela-
tive to our baseline condition. Importantly, our pattern similarity
approach considers independent time points (similarity between our
Anticipation Task cue periods and environment templates from the
Localizer Task),meaning thatmoreevidence for the cuedenvironment
does notnecessitate suppression of other environments – suppression
need not be observed, and all pattern similarity values could be
positive.

We statistically tested the Gaussian fit in two ways. First, we
compared the goodness-of-fit for the Gaussianmodel when applied to
the correctly ordered pattern similarity values vs. a shuffled-order
version of the pattern similarities, including pattern similarity to the
cue environment (“shufflednull including cue”; Fig. 5). This allowsus to
test the null hypothesis that there was no structure in the similarity
values. Second, we removed the pattern similarity to the cue envir-
onment and fit the Gaussian model only to the pattern similarities for
upcoming and past environments, in both the correct order and the
shuffled order (“shuffled null excluding cue”; Fig. 5). If a brain region
shows a superior Gaussian fit for the observed vs. shuffled data only
when the cue environment is included but not when it is excluded, that
would indicate that its Gaussian fit is entirely driven by its repre-
sentation of the cue environment. If a brain region shows a superior
Gaussian fit for the observed vs. shuffled data both when the cue
environment is included and when it is excluded, that would indicate
that this region represents the cue environment and also has system-
atically graded representations of nearby environments.

In visual cortex, the Gaussian model provided a significantly bet-
ter fit to the correctly ordered vs. shuffled pattern similarity values
when the cue environment was included in both the observed and
shuffled data (correctly ordered data vs. shuffled null including cue,
p <0.001, R2 = 0.699). The amplitudes of participants’ Gaussian fits
were significantly higher than the different-map baseline, indicating
that the cue environment was represented while it was on the screen
(mean = 0.091, standard deviation = 0.029; t(31) = 18.01, p < 0.000001;
Fig. 5a). The asymptote was significantly lower than the different-map
baseline, suggesting that other environments surrounding the cue

were suppressed relative to our baseline (mean = −0.014, standard
deviation = 0.009; t(31) = −5.97, p = 0.000001; Fig. 5a). The backward
and forward widths (σ) were 0.712 steps and 0.634 steps, respectively,
and were not significantly different from each other (V(31) = 195.00,
p =0.203), suggesting that representations were not biased toward
one direction over the other. However, when pattern similarity to the
cue environment was excluded, the Gaussian model was no longer a
betterfit for correctly ordered vs. shuffleddata (correctly ordereddata
vs. shuffled null excluding cue, p =0.848, R2 = −0.006; Fig. 5a). This
indicates that the significance of the Gaussian in visual cortex was
driven by the cue environment but not by graded similarity to nearby
environments in the sequence.

Turning to representations in hippocampus, the asymmetric
Gaussian once again provided better fits to the correctly ordered vs.
shuffled pattern similarity values when the cue environment was
included (correctly ordered data vs. shuffled null including cue,
p =0.029, R2 = 0.032). In the hippocampus, similar to visual cortex, the
amplitude of the Gaussian fit was significantly higher than the
different-map baseline (mean = 0.0185, standard deviation = 0.030;
t(31) = 2.959, p = 0.005; Fig. 5b) and the asymptote was significantly
lower than the different-map baseline (mean = −0.007, standard
deviation = 0.014; t(31) = −3.476, p = 0.001; Fig. 5b). Thus, hippo-
campus represented the cue environment while it was on the screen
and suppressed environments further away, relative to the different-
map baseline. The backward and forward widths (σ) were 2.313 steps
and 1.782 steps, respectively, and were again not significantly different
from each other (V(31) = 231.00, p =0.548), suggesting that the hip-
pocampus did not differentially represent the forward vs backward
directions.

Critically, even when the cue environment was excluded, the
Gaussian was still a better fit to the correctly ordered vs. shuffled data
(correctly ordered data vs. shuffled data excluding cue, p = 0.023,
R2 = 0.028; Fig. 5b). This indicates that the hippocampal Gaussian fit
shows significantly graded similarity to nearby environments in the
past and future, in addition to representing the cued environment. In
contrast to hippocampus and visual cortex, the Gaussian fit was not
significantly better for the correctly ordered data vs. the shuffled null
(including the cue) in the insula (p = 0.139, Supplementary Fig. 1).

We then statistically compared the width parameters in hippo-
campus and visual cortex, to determine whether hippocampus
represented more distant environments surrounding the cue and
whether this differed in the forward vs. backward direction. The width

a b
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 width ( )
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Anticipation 
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Templates
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p1 

Fig. 4 | Schematic Depiction of the Gaussian Analysis Approach. a Pattern
similarity analysis for the Anticipation Task.We obtained the correlation between a
given participant’s (e.g., P1) cue screen activity pattern for each trial of the Antici-
pation Task and the remaining participants’ (e.g., P2-P32) averaged activity patterns
for each of the environment templates on the cued path. We then ordered the
resulting pattern similarity values with the cue in the center and fit an asymmetrical
Gaussian curve. Environment images are screenshots of 3D environments created
in the game engine Unity from assets available for commercial use. b Gaussian

similarity model. The amplitude of the curve indicates the degree to which a brain
region is representing the cue environment while it is on the screen. The widths (σ)
of the curve indicate how similarity to neighboring environments falls off with the
number of steps in the forward and backward directions. Wider (vs. narrower)
widths in a brain region indicate further environment representations. The
asymptote quantifies the representations of environments that are not captured by
the width of the Gaussian; if the asymptote is lower than the dashed line (different-
map baseline) this suggests that these environments are suppressed.
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of the Gaussian in hippocampus was significantly wider than that in
visual cortex (beta = 1.379, 95% CI = [0.559, 2.199], p =0.0023), indi-
cating that hippocampus represented more distant environments.
There was no effect of direction (beta = −0.246, 95% CI = [−0.935,
0.443], p = 0.489), nor a region by direction interaction (beta = −0.569,
95% CI = [−1.746, 0.606], p =0.346). Further, the widths were sig-
nificantly larger in hippocampus than visual cortex when separately
examining only the forwardwidth (beta = 1.094, 95%CI = [0.111, 2.077],
p =0.033) and only the backward width (beta = 1.664, 95% CI = [0.621,
2.707], p = 0.003). Together, this suggests that hippocampus had
further reaching representations of temporal structure than visual
cortex. However, representations were not biased toward the forward,
compared to the backward, direction in either region nor were there
differential directional biases across regions.

Next, we determined whether the gradedness of sequence
representations was specific to the order of the cued path or if it was
also present for the uncued path, which contains the same environ-
ments but in a different order (see Methods). To investigate this, we
repeated our Gaussian analysis with pattern similarity values arran-
ged along the order of the uncued path. If the hippocampus repre-
sents the order of surrounding environments in a context-dependent
manner, wemay not observe statistically reliable Gaussian fits for the
uncued path. To test for graded representations of the past and
future along the uncued path, we compared the Guassian fit to the
shuffled null excluding the cue environment (because the cue
environment was the same for both cued and uncued paths). We also
repeated this analysis in visual cortex for completeness, but because
visual cortex showed no evidence for graded representations of the

a

b
Hippocampus

Visual Cortex

Observed DataNull Distribution

Shuffled Null 
Excluding the Cue

Shuffled Null 
Including the Cue

* *

***

Fig. 5 | Bidirectional and graded representations of temporal structure in
hippocampusbutnotearlyvisual cortex. aGaussian curve in visual cortex for the
cued path order. Visual cortex strongly represented the cue environment while it
was on the screen (above-baseline amplitude) and did not represent nearby
environments (narrow forward and backward widths (σ)), instead showing sup-
pression of environments other than the cue (below-baseline asymptote). The
visual cortex Gaussian fit was significantly better than the shuffled null including
the cue, but not the shuffled null excluding the cue. N = 32 participants. Permuta-
tion test (10,000 shuffles) comparing observed data to shuffled null including and
excluding cue, two-tailed, ***p <0.001bGaussian curve in the hippocampus for the
cued path order. The hippocampus represented the cue environment while it was
on the screen (above-baseline amplitude), represented nearby environments in a

graded manner, in both the forward and backward direction (wide forward and
backward widths (σ)), and suppressed environments that were furthest away
(below-baseline asymptote). The hippocampus Gaussian fit was significantly better
thanboth the shufflednull including and excluding the cue. Points indicate average
pattern similarity at each step from the cue anderror bars indicate standarderrorof
the mean. Colored line indicates the average Gaussian fit across participants, with
the red end of the rainbow scale indicating higher pattern similarity and the purple
end indicating lower pattern similarity, applied to values in each brain
region separately. Gray lines indicate each participant’s Gaussian curve. N = 32
participants. Permutation test (10,000 shuffles) comparing observed data to
shuffled null including and excluding cue, two-tailed, Left: * p = 0.029, Right: *
p = 0.023.
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past and future for the cued path, we also expected it to show no
gradedness for the uncued path.

As expected, the Gaussian fit in visual cortex for the uncued path
was not better than the fit for the shuffled null excluding
the cue environment (p = 0.993, R2 = −0.0173; Fig. 6a), and the
Gaussian fit was not significantly different for the cued path vs
the uncued path (p = 0.132), indicating that visual cortex did not
represent surrounding environments on either the cued or uncued
path. In the hippocampus, the Gaussian fit for the uncued path
was not significantly better than the fit for the shuffled null excluding
the cue environment (p = 0.915, R2 = −0.012, Fig. 6b). Further, the-
Gaussian fit was significantly better for the order of the cued
path compared to the uncued path (p = 0.005). Together, these
results show that the graded similarity to nearby environments in the
past and future in hippocampus was specific to the order of the
cued path.

Hippocampal suppression of environment representations
predicts response time costs
We next sought to examine whether neural representations of tem-
poral structure were related to behavioral performance on the
Anticipation Task. We reasoned that relative suppression of environ-
ments surrounding the cue, indicated by an asymptote that is lower
than the different-map baseline, should interfere with the generation
of long timescale predictions: more suppression should be associated
with more response time costs for accessing future environments. To
test this, we obtained the Spearman rank-order correlation between
participants’ Gaussian asymptote, separately for visual cortex and
hippocampus, and the slope of their response times across steps into
the future. We hypothesized that a lower (more suppressed) asymp-
totewould be related to steeper response time slopes across steps into
the future, indicating a larger response time cost when making judg-
ments about further environments. We expected this relationship to

a

b Hippocampus

Visual Cortex

Observed Data

Null Distribution

Shuffled Null 
Excluding the Cue

Shuffled Null 
Excluding the Cue

Fig. 6 | Representations of bidirectional temporal structure are context-
specific. The Gaussian curve for the uncued path order was not significantly better
than the shuffled null excluding the cue environment in either visual cortex (a) or
hippocampus (b). Points indicate average pattern similarity at each step from the
cue and error bars indicate standard error of the mean. Colored line indicates the

average Gaussian fit across participants for the uncued path order, with the rain-
bow scale indicating pattern similarity values, scaled separately for each brain
region along the same scale as used for the cued path Gaussian fit (red end = higher
pattern similarity, purple end = lower pattern similarity). Gray lines indicate each
participant’s Gaussian curve. N = 32 participants.

Article https://doi.org/10.1038/s41467-024-53293-3

Nature Communications |         (2024) 15:9094 7

www.nature.com/naturecommunications


be stronger in hippocampus vs the visual cortex, because visual cortex
showed suppression of even the most nearby environments (Fig. 5a).

In visual cortex, there was no relationship between the asymptote
of theGaussiancurve and the response time slope across steps into the
future (rho = −0.050, p = 0.784, Fig. 7a). As hypothesized, in the hip-
pocampus there was a significant negative correlation between the
asymptote of the Gaussian curve and response time slope (rho =
−0.362, p = 0.042, Fig. 7b), indicating that suppression of environ-
ments surrounding the cue was related to response time costs for
anticipating further environments.

We further tested whether there was a relationship between
response time slopes and width of the Gaussian fit, such that narrower
widths are associated with steeper response time slopes. There was no
relationship between either forward or backward width and response
time slope in visual cortex (Forward Width: rho = −0.149, p =0.415;
Backward Width: rho = 0.071, p =0.698) or hippocampus (Forward
Width: rho = 0.233, p =0.199; Backward Width: rho = −0.008,
p =0.966).

Temporal structure is hierarchically organized within and
across visual regions
We next conducted an exploratory searchlight analysis to determine
which brain regions outside visual cortex and hippocampus exhibited
Gaussian representations (see Methods). Our searchlight analysis
revealed significant Gaussian representations across voxels in the
visual system (Fig. 8a, Supplementary Fig. 2), including regions that
code for scene information such as parahippocampal place area (PPA)
and the retrosplenial cortex (RSC)40. There were no differences in
backward vs forward widths (σ) in any voxel in the searchlight, sug-
gesting bidirectional representations of temporal structure across the
visual system.

Next, we conducted an exploratory analysis to test whether tem-
poral structure was represented hierarchically across searchlights that
exhibited significant Gaussian fits.We decided to focus our analysis on
PPA and RSC, as prior work has shown within-region functional dif-
ferences in posterior vs anterior parts of these visual regions41–43.
Specifically, posterior aspects of these regionsmayplay a larger role in
scene perception while anterior aspects may represent scene mem-
ories. Based on these differences, we hypothesized that there may be
hierarchical representations of temporal structure within PPA and
RSC, with further reaching representations (as indicated by wider vs.
narrower widths (σ)) in successively more anterior aspects of these
regions. To test for hierarchical organization of temporal structure, we

obtained the correlation for each participant between (1) the averaged
forward and backward widths (σ) of the Gaussian curve in each voxel
and (2) that voxel’s y-coordinate, indicating its position along the
posterior-anterior axis. We then tested whether these correlations
were different from 0 across participants. We conducted the same
analysis for the amplitude and asymptote, to determine if the repre-
sentation of the cued environment and suppression of nearby envir-
onments also changed along the posterior-anterior axis.

Therewas a significant positive correlation betweenwidth (σ) and
y-coordinate, indicating that Gaussian fits became progressively wider
in progressively more anterior aspects of both RSC (t(31) = 2.638,
p =0.013; Fig. 8b) and PPA (t(31 = 2.424, p = 0.021; Fig. 8c). In PPA, the
correlation between width and y-coordinate remained significant
when separately examining the forward and backward widths, sug-
gesting further reaching bidirectional representations inmore anterior
parts of this region (Forward Width: t(31) = 2.11, p = 0.043; Backward
Width: t(31) = 2.046, p = 0.049, Supplementary Fig. 6). In RSC, the
forward width successively increased with y-coordinate (t(31) = 3.931,
p =0.0004), but the backwardwidth did not change with y-coordinate
(t(31) = −0.256, p = 0.799, Supplementary Fig. 6), suggesting that
hierarchically ordered representations were driven by progressive
changes in the forward width in this region. There was a negative
correlation between amplitude andy-coordinate in PPA (t(31) = −2.636,
p =0.013; Fig. 8c), but not RSC (t(31) = −0.550, p =0.586; Fig. 8b). To
determine whether the change in width along the posterior-anterior
axis was related to the change in amplitude, such that wide Gaussian
fits are associated with lower amplitudes, we ran a partial correlation
between width and y-coordinate, controlling for amplitude. The
negative correlation between width and y-coordinate remained sig-
nificant in RSC (t(31) = 2.050, p = 0.049), but not PPA (t31) = 0.08,
p =0.936). Thus, the amplitude and width of the Gaussian fit can vary
independently in some regions, but are coupled in others. We further
conducted simulations of BOLD data to confirm the lack of an inher-
ent, systematic relationship between the width and amplitude of the
Gaussian fits (see Supplementary Materials, Supplementary Fig. 4 for
details). Finally, there was no correlation between asymptote and
y-coordinate in either PPA (t(31) = 1.721, p =0.095) or RSC
(t(31) = 1.047, p =0.303). Overall, this suggests a within-region hier-
archical organization of representations in the visual system, such that
more anterior (vs posterior) aspects of PPA and RSC represent envir-
onments that are further away in the past and future. Importantly, the
partial correlation between width and y-coordinate while controlling
for amplitude in RSC, as well as our simulations, suggests that further
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Fig. 7 | Suppression of further environments in the hippocampus is related to
response time costs. In early visual cortex (a), asymptotes, indicating suppression
of non-cued environments, were not related to the slope of response times across
steps into the future. In the hippocampus (b), lower asymptotes were related to
steep response time slopes, suggesting that participants were slower to respond to

further environments when those environments were relatively suppressed. Lines
indicate the correlation and gray error ribbons indicate 95% confidence intervals;
points indicate each participant’s asymptote and response time slope. Source data
are provided as a Source Data file.N = 32 participants. Spearman’s rank correlation,
* p = 0.042.
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reaching representations are not necessarily a consequence of
reduced processing of the present.

We additionally tested whether there were across-region differ-
ences in width along the visual hierarchy. We hypothesized that
Gaussian fits would be successively wider in later visual cortex regions,
compared to earlier ones12,44. We computed the average width of the
Gaussian fit across all voxels separately for V1, V2, V3, V4, and PPA for
eachparticipant, and then obtained the correlation between 1) average
width of theGaussianfit in a region and 2) that region’s order along the
visual hierarchy. We then tested whether these correlations were dif-
ferent from 0 across participants. We found a significant positive
correlation, indicating that successively later visual cortex regions had
successively wider Gaussian fits (t(31) = 2.136, p =0.041). This correla-
tion remained significant when only examining the forward direction
(t(31) = 2.337, p =0.026), and when only examining the backward
direction(t(31) = 3.025, p =0.005, Supplementary Fig. 6). It also
remained significant when only considering V1, V2, V3, and V4
(t(31) = 4.322, p = 0.0001). Taken together, this suggests that past and
future states were represented hierarchically both within and across
regions in visual cortex.

Discussion
We examined how extended temporal structure is represented in the
brain during context-dependent anticipation of future events.

Participants anticipated multiple steps into the future accurately but
were slower to anticipate far vs near events. Multivoxel fMRI analyses
revealed bidirectional and context-specific representations of tem-
poral structure in hippocampus, with graded representations of
environments in the forward and backward direction for the cued, but
not the uncued context. Hippocampal representations of temporal
structure were relevant for behavior: suppression of distant environ-
ments (relative to the different-map baseline) was linked to response
time costs for anticipating further events. Beyond hippocampus, a
hierarchy of temporal structure was also apparent within and across
visual regions: successively more anterior aspects of PPA and RSC
represented further environments into the past and future, and later
regions in the visual hierarchy (e.g., V4) had further reaching repre-
sentations than earlier ones (e.g., V1).

Our results build upon influential theories of prediction in the
brain. Graded coding of upcoming events is consistent with successor
representation models2,24,45,46, which propose that information about
future states becomes cached into the representation of the current
state in a temporally discounted manner. These models have been
extended to account for multiple timescales of prediction by incor-
porating different scales of temporal discounting24. In line with these
theories, recent work has shown thatmultiple timescales of prediction
are represented simultaneously in the brain, with progressively
further-reaching predictions in progressively more anterior brain
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Fig. 8 | Bidirectional and graded representations of temporal structure reveal
within-region hierarchies in the visual system. a Searchlight results revealed
statistically reliable Gaussian representations in voxels across visual regions. For-
ward and backwardwidths (σ) of the Gaussian curveswere hierarchically organized
within visual regions (e.g., RSC and PPA), with narrow widths (indicated in red) in
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yellow) in progressivelymore anterior aspects of the region. Gaussian fits of sample
voxels are shown from RSC (b) and PPA (c). Voxels in progressively more anterior
(indicated in yellow) compared to posterior (indicated in red) aspects of RSC
and PPA had progressively wider widths (bottom left in (b) and (c)) and progres-
sively lower amplitudes in PPA (bottom right in (c)) but not RSC (bottom right
in (b)).
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regions12 and with relatively less evidence for far away vs nearby
predictions22,47. Converging with this past work, in our prediction task
we found that patterns for nearby vs far awayenvironments (defined in
an independent task) were activated atmultiple scales in a hierarchical
manner across brain regions. Strikingly, although our asymmetric
Gaussian analysis was designed to allow differential coding of the
future vs the past, representations were not uniquely biased toward
future states. Instead, the hippocampus and visual system represented
temporal structure bidirectionally, with graded representations into
the past and future. This finding is seemingly at odds with successor
representation models45,48, which assume that representations should
be future-oriented. Taken together with prior work showing that hip-
pocampal representations of temporal sequences47,49,50 can be flexibly
biased in either the forward or backward direction based on task
demands34, our findings suggest that representations of the past and
future can exist simultaneously within the hippocampus, even though
the task demands were to anticipate future states.

Why were both past and future states represented in the brain in
our task? Our finding of bidirectional representations might be con-
sistent with event segmentation and temporal context models, which
suggest that a whole event is brought online during behavior, includ-
ing other memories nearby in time from the same event36. Therefore,
we believe onepossible explanation for ourfindings is the proximity to
an event boundary: if cued with the beginning of an event, individuals
may exhibit future oriented predictions, but not retrospective repre-
sentations. But, if cued with the middle of an event, individuals may
need to bring online representations of past states to access their
memory for the whole event51. An important distinction between our
experiment and past studies of prediction is that our sequences were
circular and temporally extended, whereas sequences in prior studies
tended to have a clear end point (i.e. were linear instead of
circular)12,22,38,47,52 or were shorter19. Because our sequences were cir-
cular, environmentswere neither at the beginning nor at the end of the
sequence, potentially explaining our finding of bidirectional rather
than future-oriented representations. Thus, our findings present an
intriguing avenue for future research to disentangle when bidirec-
tional representations might be present, in line with temporal context
models, rather than just forward ones, in line with successor
representations.

In addition to representing nearby environments in the past and
future, we also found that the hippocampus suppressed more distant
environments, showing deactivation of these environments’ patterns
relative to an unrelated-environment baseline. To our knowledge,
priorwork hasnot looked at suppression of far away environments in a
sequence during prediction of upcoming events12,22. It is possible that,
in this previous work, suppression of further events was present but
went undetected. Another possibility for such suppression is a result of
the overlapping paths in the current study: individuals may have
suppressed further environments on the cued path if they were com-
ing up sooner on the uncued path. Thus, suppressing environments
that were far away in the cued path but nearby in the uncued pathmay
have been useful in avoiding confusion between the overlapping
paths, and contributed to the findings observed here. Although sup-
pressing distant environments can be beneficial for responding to
imminent events, it can also lead to behavioral costs. For example, if a
more distant environment appears as a probe, its representation may
have tobe reactivated, and this reactivationwill takemore time if itwas
initially suppressed – leading to response time costs. Indeed, hippo-
campal suppression of distant environments was related to response
times costs for anticipating further events. This highlights a trade-off
between prioritizing nearby events and being able to quickly respond
to upcoming events further in the future. However, it is important to
note that 1) the observed suppression was calculated relative to the
different-map baseline, and therefore only indicates relative suppres-
sion compared to representations of other environments in the

experiment, and2) theobserved individual-differences correlationwas
observed with a relatively small sample size, requiring replication in
future work. With respect to the first point, environments may be
suppressed relative to the different-map baseline but not suppressed
compared to ongoing task-irrelevant thoughts or experiences; if so,
the environments represented by the asymptotemay be considered to
be more weakly represented, rather than suppressed in an absolute
sense. Future work could add additional comparisons or use alter-
native neuroimaging techniques to determine the level of suppression,
and test whether the widths of brain regions’ predictive horizons
influence behavioral performance in studies specifically powered for
individual differences analyses.

Representations of temporal structure extended beyond hippo-
campus. In an exploratory whole-brain searchlight analysis, we found
representations of temporal structure across the visual system,
including PPA and RSC, regions that play an important role in spatial
cognition40. Both PPA and RSC represented the cued environment but
also represented the temporal structure of surrounding environments
in the sequence in both the forward and backward direction. Our
findings therefore extend prior work showing that PPA responses can
bemodulated by temporal context53 and prior contextual associations
more generally54–57. Notably, our findings go beyond this prior work by
showing a gradual progression of sequence coding within PPA and
RSC, with progressively more anterior regions representing more of
the future and past and less of the present. This is broadly consistent
with prior work suggesting a posterior vs. anterior division within PPA,
with posterior aspects playing a larger role in scene perception and
anterior aspects playing a larger role in scenememory41–43. This within-
region hierarchy was complemented by an across-region hierarchy,
with regions higher up the visual hierarchy, such as V4 or PPA, repre-
senting further states into the past and future than regions earlier in
the visual hierarchy, such as V1. Thus, we show that, within a context,
visual regions may balance representations of perception and mem-
ory, gradually incorporating less information from perception and
more information about learned temporal structure along a posterior
to anterior hierarchy.

To investigate bidirectional, context-dependent sequence repre-
sentations, we carefully manipulated overlapping sequences. Pairs of
sequences contained the same environments in a different order. They
were structured such that, for each environment, the environments
one and two steps into the future and the past were all different in the
two sequences. We found that prospective and retrospective repre-
sentations in hippocampus were context-dependent, emerging only
for the cued but not the uncued sequence. This dovetails with prior
work showing context-sensitive representations of future events in
hippocampus38, and extends this work to graded and bidirectional
sequence representations within a context. Strikingly, we observed
such effects in hippocampus even with environment templates that
were identified across participants. The finding of reliable hippo-
campal activity patterns for individual environments across partici-
pants adds to an emerging body of work demonstrating shared
hippocampal representations across individuals, representations
that were previously difficult to detect58,59. We speculate that
these shared representations may include information about the per-
ceived and/or imagined spatial layout of the scenes, given prior work
linking the hippocampus to representations of attended spatial
configurations60–65. Further, these hippocampal representations of
visual scenes are consistent with a burgeoning line of work linking this
region to visual representations more broadly66–68. To be detectable
across individuals, these shared hippocampal representations are
likely to be fairly coarse, similar to other across-individual repre-
sentations that have been identified across the cortex69.

Across visual cortex, the width of the Gaussian curve (when the
cue environment was included) changed systematically, becoming
progressively wider within early visual cortex from V1-V4 and from V1
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to PPA. However, unlike hippocampus, the Gaussian curve in early
visual cortex as awholewasnot superior for the correctly ordered data
vs. shufflednull when the cue environmentwas excluded. Bidirectional
representations of the future and the past weremore robust in higher-
order visual areas (PPA, RSC) than early visual cortex. This result is
seemingly in contrast to a rich literature showing predictive repre-
sentations in early visual regions11. One possibility for why we were
unable to detect predictions in early visual cortex is due to the nature
of our stimuli. Past work decoding predictions from early visual
regions has tended to use relatively simple stimuli such as gratings13,14,
fractals16, or specific spatial locations70. In contrast, we used rich, nat-
uralistic scenes thatwere experienced in immersive virtual reality from
multiple viewpoints, making it unlikely that participants were gen-
erating predictions of low-level visual features tied to specific retino-
topic locations. Instead, individuals in our study may have been
predicting whole scenes at a relatively coarse (vs detailed) level,
leading to the predictive representations observed in higher order
scene-specific visual regions such as PPA and RSC40. We were also
unable to find evidence for long-timescale predictions in the insula,
unlike our prior work investigating predictive hierarchies across the
brain during movie watching12. The relative paucity of environment-
sensitive voxels in the insula may have hurt our ability to detect
sequence representations in this region. Alternatively, the environ-
ment sequences used in our current study may not have engaged the
insula as strongly as a continuously unfolding audiovisual movie sti-
mulus that allowed the generation of social or emotional predictions23.

In our study, individuals were asked to generate narratives to tie
together the environments in each sequence to help learning, mem-
ory, and prediction. These stories were, however, idiosyncratic,
meaning that the content of a given person’s story could have influ-
enced the conceptualization and representation of the environments
and the extent to which an individual reactivated past or future states.
Our analyses, however, relied on activity patterns for each environ-
ment that were obtained from across-participant templates; because
the only shared information across people was the environments
themselves and not the sequences or the generated stories, this
allowedus to test for group-level similarities in the graded activationof
environment representations. Thus, our findings show that despite the
idiosyncrasies of individual stories, participants were nevertheless still
representing the environments in a reliable and consistent way during
the anticipation task – a way that was systematic enough that we could
detect evidence for bidirectional and graded representations of the
future and the past across participants. Nevertheless, it remains the
case that the stories that individuals generated may have differed in
their social predictions, goals, and motivations, and this may have
influenced our findings. Such narrative differences across individuals
may have led to differential involvement of the insula across
participants23, making it difficult for us to replicate long-timescale
predictions in this region12. Future work could assess the participants’
stories in greater detail to determine whether the stories with stronger
social narratives were related to far-reaching predictions in the insula.

Broadly, it may be advantageous to represent temporal structure
bidirectionally, rather than only prioritizing future states. For example,
representing past states and future states could be a useful strategy
when events surrounding ongoing experience differ based on context.
Activating links toward past states as well as future ones may allow
individuals to contextualize their current location within the
sequence51. This possibility is consistent with our prior work showing
that individuals represent sequences in terms of context-specific links
between environments39: when an environment is cued, its associated
links in both directions may be brought to mind so that the entire
context is prioritized. An alternative possibility is that representing
temporal structure into the past and future happens automatically:
activating a particular moment within a temporally extended experi-
ence could cause activation to spread to the entire event

representation36,71,72, whichmay comprise both past and future. Future
work could disentangle these possibilities and further investigate the
circumstances under which future and past states are simultaneously
represented.

Overall, the results presentedhere show that temporal structure is
represented bidirectionally in the hippocampus and visual system.
Future and past representations of temporal structure were graded,
with less evidence for further environments in both the forward and
backward direction, and were organized along a posterior to anterior
hierarchy within and across regions. Our results further our under-
standing of how temporal structure is represented in the brain: such
bidirectional representations could allow integration of past events
from memory alongside anticipation of future ones, which could
support adaptive behavior during complex, temporally extended
experiences.

Methods
Participants
All participants in the current study gave written, informed consent in
accordance with the Institutional Review Board at Columbia Uni-
versity. Thirty-five healthy younger adults from the Columbia Uni-
versity community participated in the experiment. Participants were
compensated $15 per hour for the behavioral training session and $20
per hour for the fMRI session (approximately $80 combined across
both sessions). Three participants were excluded for technical issues
withdata collection, excessivemotion (10%of TRs across all runs of the
experiment marked as motion outliers by fMRIprep output), and diz-
ziness inside the MRI scanner. Applying these exclusions resulted in a
final sample of 32 participants (21 self-reported female/11 self-reported
male, 19–35 years old,mean= 24.17, sd = 4.11, 13–29 years of education,
mean = 16.85, sd = 3.76).

Overview
Participants learned two sequences (“Green Path” and “Blue Path”)
within each of twomaps (Map A andMap B; Fig. 1a). Map A andMap B
contained eight distinct environments each. Within each map, the
Green Path and Blue Path contained the same environments in a
different order.

Participants first learned the order of the four sequences of
environments by generating stories (Fig. 1b) and then experiencing the
environment sequences in immersive virtual reality using an Oculus
Rift (Fig. 1c). Participants returned 1 day later and completed the
AnticipationTask in theMRI scanner (two runs, 32 trials per run). In the
Anticipation Task, participants used their memory for the four
sequences to anticipate upcoming environments. They then com-
pleted a Localizer Task to obtain multivoxel patterns of brain activity
for each environment (four runs, 16 trials per run).

Stimuli and sequence structure
Stimuli consisted of 16 3D virtual reality environments in the Unity
game engine. Environments were obtained from asset collections in
theUnity Asset Store. Half of the environmentswere indoor and half of
the environments were outdoor. Using Unity, we created 2D images of
each environment by rotating a virtual camera to eight different
angles, 45 degrees apart. One angle was selected to be used as the cue
and probe images throughout the task and the other angles were used
for the panorama phase of the Localizer Task.

The 16 environments were used to form four sequences (Map A
Green Path, Map A Blue Path, Map B Green Path, Map B Blue Path).
Eight of the environmentswereassigned toMapA (i.e., thefirst learned
set of environments) and the other eight environments were assigned
to Map B (i.e., the second learned set of environments). Then, within
each map (A or B), the Green Path and the Blue Path consisted of the
same eight environments in a different order. The final environment in
each sequence connected back to the first environment, forming a
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circle. The Green and Blue Paths were designed to be as distinct as
possible: for a given environment the two preceding and two suc-
ceeding environments were different across the paths (Fig. 1a). The
environment-to-map assignment and the order of the environments
within a sequence was randomized across participants, although the
Green Pathwas always shuffled in the sameway to create the Blue Path,
as described above.

Procedure
Participants first completed a training phase outside the MRI scanner.
They returned one day later and completed a sequence refresher task
outside theMRI scanner before taking part in the fMRI session. During
fMRI, they completed an Anticipation Task (two runs), an Integration
Task (four runs, data not included in the current manuscript) and a
Localizer Task (four runs). In the training session, stimuli were pre-
sented on a computer screen with PsychoPy version 273 and in virtual
reality with an Oculus Rift and Unity, using a mixture of custom code
and OpenMaze74. In the fMRI session, PsychoPy was used to present
the stimuli, which were projected onto a screen in the scanner bore
and viewed via a mirror mounted on the head coil.

Training phase. In the training phase (one day before the fMRI scan),
participants were instructed to learn the order of the four sequences
(Map A Green, Map A Blue, Map B Green, Map B Blue; see Stimuli and
Sequence Structure). Participants always began by learning the Map A
Green Path, becauseMapAwasdefined as the first set of environments
that participants learned and the Green Path was defined as the first
sequence within each map.

Participants were instructed to learn the sequences by generating
a story to link the environments in order. They first saw 2D renderings
of all the environments in the Map A Green Path order displayed on a
computer screen. They were told to generate a detailed story to link
the environments in order, and that the final environment should loop
back to the first environment in the sequence to create a circle. Par-
ticipants indicated that they were finished generating a story by
pressing a button. Then, they were shown the sequence as pairs of
adjacent environments with an empty text entry box displayed
underneath (e.g., environments #1 and #2, then environments #2 and
#3, etc). Participants were told to write down the story that they had
generated (Fig. 1b; see Supplementary Material for story examples).
Participants were given unlimited time to generate and write down
their story. Once they had finished, participants verbally repeated the
story back to the experimenter.

Following story generation, participants then experienced the
Map A Green Path in virtual reality using an Oculus Rift (Fig. 1c).
Participants were initially placed in the first environment in the
sequence. After five seconds, a floating green sphere and blue sphere
appeared in a random location within reaching distance of the par-
ticipant. Participants were told that touching the spheres would
teleport them to the next environment in the correspondingly
colored sequence: they were told to touch the green sphere on the
Green Path and the blue sphere on the Blue Path. After being tele-
ported to the next environment in the corresponding sequence,
participants were again given five seconds to explore the environ-
ment before the spheres would appear. After 20% of trials (“test
trials”), instead of teleporting to the next environment in the
sequence, participants were teleported to a black environment in
which they were shown two images of upcoming environments and
were told to indicate which of those two environments was coming
up sooner in the sequence they were currently “traversing”, relative
to the preceding environment. Participants had ten seconds to
respond using the Y and B buttons on the left and right Oculus Rift
controllers. They were given feedback about whether their answer
was correct or incorrect. As participants were exploring the envir-
onments in virtual reality, they were also told to rehearse their stories

to ensure the sequence was learned. Participants rehearsed the Map
A Green Path sequence in virtual reality three times following this
procedure.

Participants then repeated the exact same procedure, but learned
theMapA Blue Path, which consisted of the same environments as the
Map A Green Path in a different order. Participants were told to make
their Blue Path story distinct from their Green Path story to avoid
confusing the two paths. They then followed the same virtual reality
procedure as noted above, but were instructed to touch the blue
spheres instead of the green spheres to teleport between
environments.

Following Map A Green and Blue Path learning, participants were
exposed to each sequence three more times (including test trials) in
virtual reality in an interleaved fashion (i.e., one presentation of Green
Path then one presentation of Blue path, repeated three times). Par-
ticipants then recalled the order of the Map A Green and Blue Paths.
The above procedure was then repeated for theMap B Green and Blue
Paths. In total, the training phase took between one and a half and two
hours to complete. All participants performed at ceiling by the end of
the training phase.

Sequence refresher task. Participants returned one day later. Before
the fMRI scan, they completed a sequence refresher task to ensure
they maintained memory for all four sequences learned during
the Training Phase. Participants viewed 2D renderings of all the
environments from virtual reality, one at a time, in the order of each of
the four sequences (Map A Green, Map A Blue, Map B Green, Map B
Blue). Participants saw each sequence in order three times. In the first
presentation, participants were told to verbally repeat the stories they
had generated for each sequence. In the subsequent two presenta-
tions, participants were told to verbally recall the environment that
came after the currently presented environment in the current
sequence.

Anticipation task. During the fMRI scan, participants first completed
the Anticipation Task, for which therewere two runswith 32 trials each
(Fig. 2a). On each trial in the Anticipation task, participants were cued
with an environment and apath cue (“Green”or “Blue”) for 3 s. This cue
indicated the starting point and sequence on that trial. Participants
then viewed a blank (gray) screen for a variable duration (five to nine
seconds). Then, participants were presented with two images of
upcoming environments and were told to judge which of the two
environments was coming up sooner in the cued sequence, relative to
the cue image. Participants were given three seconds to make this
judgment. This relatively short response deadline was implemented to
encourage participants to use the blank screen period to generate
predictions along the cued path in preparation for the forced choice
decision. The correct answer could be one to four steps away from the
cue image. The incorrect answer could be a maximum of five steps
away from the cue image. Because the sequences were circular, every
environment could be used as a cue with successors up to five steps
away. There was a uniformly sampled three to eight second jittered
inter-trial interval (ITI), during which participants viewed a fixation
cross. At the end of each run, there was a 60 second rest period during
which participants viewed a blank screen.

In each run, participants were cued with every environment from
Map A and B on the Blue and Green Paths (eight environments
per sequence) for a total of 32 trials per run (64 trials total). In the
probe phase, the correct answer was equally distributed across steps
into the future (one to four). The incorrect answer was randomly
sampled to be one to four steps away from the correct answer (two to
five steps away from the cue). Within a run, sequences were presented
in blocks (i.e., participants completed the Anticipation Task for all the
environments in the Map A Green Path in one block), but the order of
the cues was randomized within a block. The order of the sequence
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blocks was also randomized across runs and participants. A single run
of the Anticipation Taskwas approximately 11min, for a total of 22min
across both runs.

Integration task. Following the Anticipation Task, participants com-
pleted an Integration Task, in which they were told that one of the
environments in Map A was now connected to one of the environ-
ments in Map B on either the Green or Blue Path. One of the envir-
onments in Map B also connected back to Map A, creating a single
integrated path encompassing all the environments in bothmaps. The
integrated path (Green or Blue) was counterbalanced across partici-
pants, with the other path serving as a control non-integratedpath. For
example, if a participant learned thatMapA andMapBwere integrated
on the Green Path, the Blue Path would be the non-integrated path.
The environments that connected Map A to Map B were randomly
selected, while the environments that connectedMap B back toMapA
were always the preceding environments in the sequence, allowing the
integrated path to form a circle. Participants then completed a version
of the Anticipation Task (see above) in which they anticipated
upcoming environments in the non-integrated and integrated paths
(four runs, 24 trials per run). The IntegrationTask is not analyzed in the
current manuscript.

Localizer task. Participants then completed four runs of a Localizer
Task used to obtain environment-specific patterns of brain activity
across participants (Fig. 3a, see Environment Templates). In the Loca-
lizer Task, participants were cued with an environment fromMap A or
B on the screen for one second. The cue in the Localizer Task did not
include a path cue (Green or Blue), allowing us to obtain a context-
independent pattern of brain activity for each environment. Specifi-
cally, the lack of a context cue should disincentivize participants from
consistently activating one sequence (Green or Blue path) over the
other while viewing the environments – allowing us to obtain activity
patterns for each environment relatively uncontaminated by asso-
ciated information. Following the cue, participants saw a blank gray
screen for five seconds, during which they were told to imagine being
inside the environment in virtual reality. Participants then viewed
images of the cued environment from different angles, 45 degrees
apart, for four seconds. They were then given three seconds to rate
how well their imagination matched the actual images of the envir-
onment, on a scale from one to four (one = not well, four = very well).
There was a three to eight-second jittered ITI, during which partici-
pants viewed a fixation cross.

In each run, participants were cued with every environment from
MapA and B for a total of 16 trials per run (64 trials total across all four
runs). The order of the environments was randomized across runs and
participants. A single run of the Localizer Task was approximately five
and a half minutes, for a total of 22min across all four runs.

Behavioral Analysis. We conducted analyses on the behavioral data in
theRprogramming language using generalized linear and linearmixed
effects models (GLMMs and LMMs, glmer and lmer functions in the
lme4 package, version 1.1.35.375). For analyses that modeled multiple
observations per participant, such as accuracy or response time on a
given trial, models included random intercepts and slopes for all
within-participant effects. All response time models examined
responses on correct trials only.

To ensure that participants performed effectively during the
Anticipation Task, we first tested whether accuracy during the Probe
screen (see Fig. 2a) was better than chance performance (50%) using a
one-sample t-test.

Wenext determinedwhether accuracyand response timediffered
across the Maps (A and B) and Paths (Green and Blue). To examine
sequence effects, we fit separate models for accuracy (a GLMM) and
response time (an LMM) as a function of Map (A = −0.5, B = 0.5), Path

(Green = −0.5, Blue = 0.5), and their interaction. We used the following
R-based formulas (where “participant” indicates participant number):

glmerðcorrect � map*path+ ð1 +map*pathjparticipantÞ, family = }binomial}, dataÞ
ð1Þ

lmerðRT � map*path + ð1 +map*pathjparticipantÞ, data, subset= ðcorrect = = 1ÞÞ
ð2Þ

Next, we determined whether accuracy and response time dif-
fered across steps into the future. We fit separate models for accuracy
(a GLMM) and response time (an LMM) as a function of steps into the
future (−0.75 = 1 step, −0.25 = 2 steps, 0.25 = 3 steps, 0.75 = 4 steps).We
used the following R-based formulas (where “participant” indicates
participant number):

glmerðcorrect � steps + ð1 + stepsjparticipantÞ, family= }binomial}, dataÞ
ð3Þ

lmerðRT � steps + ð1 + stepsjparticipantÞ, data, subset= ðcorrect = = 1ÞÞ ð4Þ

MRI acquisition
Whole-brain data were acquired on a 3 Tesla Siemens Magnetom
Prisma scanner equipped with a 64-channel head coil at Columbia
University. Whole-brain, high-resolution (1.0mm iso) T1 structural
scans were acquired with a magnetization-prepared rapid acquisition
gradient-echo sequence (MPRAGE) at the beginning of the scan ses-
sion. Functionalmeasurementswerecollectedusing amultibandecho-
planar imaging (EPI) sequence (repetition time = 1.5 s, echo time =
30ms, in-plane acceleration factor = 2,multiband acceleration factor =
3, voxel size = 2mm iso). Sixty-nine oblique axial slices were obtained
in an interleaved order. All slices were tilted approximately −20
degrees relative to the AC-PC line. There were ten functional runs in
total: two runs of the Anticipation Task, four runs of an Integration
Task (not analyzed here), and four runs of the Localizer Task. Field
maps were collected after the final functional scan to aid registration
(TR= 679ms, TE = 4.92ms/7.38ms, flip angle = 60°, 69 slices, 2mm
isotropic).

Preprocessing
Results included in this manuscript come from preprocessing per-
formed using fMRIPrep 1.5.2 (Esteban, Markiewicz, et al. (2018)76;
Esteban, Blair, et al. (2018)77; RRID:SCR_016216), which is based on
Nipype 1.3.1 (Gorgolewski et al.78; Gorgolewski et al. (2018)77;
RRID:SCR_002502).

Anatomical data preprocessing. The T1-weighted (T1w) image was
corrected for intensity non-uniformity (INU) with N4BiasFieldCorrec-
tion (Tustison et al.)79, distributed with ANTs 2.2.0 (Avants et al.80,
RRID:SCR_004757), and used as T1w-reference throughout the work-
flow. The T1w-reference was then skull-stripped with a Nipype imple-
mentation of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Brain tissue segmentation of cere-
brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast (FSL 5.0.9,
RRID:SCR_002823, Zhang, Brady, and Smith81). Brain surfaces were
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847,
Dale et al.,82), and the brain mask estimated previously was refined
with a custom variation of themethod to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-matter of
Mindboggle (RRID:SCR_002438, Klein et al.83). Volume-based spatial
normalization to one standard space (MNI152NLin2009cAsym) was
performed through nonlinear registration with antsRegistration
(ANTs 2.2.0), using brain-extracted versions of both T1w reference
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and the T1w template. The following template was selected for spa-
tial normalization: ICBM 152 Nonlinear Asymmetrical template ver-
sion 2009c [Fonov et al.84, RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym].

Functional data preprocessing. For each of the 10 BOLD runs found
per subject (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. A defor-
mation field to correct for susceptibility distortions was estimated
based on a field map that was co-registered to the BOLD reference,
using a custom workflow of fMRIPrep derived from D. Greve’s epide-
warp.fsl script and further improvements of HCP Pipelines (Glasser
et al.)85. Based on the estimated susceptibility distortion, an unwarped
BOLD reference was calculated for a more accurate co-registration
with the anatomical reference. The BOLD reference was then co-
registered to the T1w reference using bbregister (FreeSurfer) which
implements boundary-based registration (Greve and Fischl 2009). Co-
registration was configured with six degrees of freedom. Head-motion
parameters with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and translation parameters)
are estimated before any spatiotemporal filtering using mcflirt (FSL
5.0.9, Jenkinson et al.)86. The BOLD time-series, were resampled to
surfaces on the following spaces: fsaverage6. The BOLD time-series
(including slice-timing correction when applied) were resampled onto
their original, native space by applying a single, composite transform
to correct for head-motion and susceptibility distortions. These
resampled BOLD time-series will be referred to as preprocessed BOLD
in original space, or just preprocessed BOLD. The BOLD time-series
were resampled into standard space, generating a preprocessed BOLD
run in [‘MNI152NLin2009cAsym’] space. First, a reference volume and
its skull-stripped version were generated using a custommethodology
of fMRIPrep. Several confounding time-series were calculated based
on the preprocessed BOLD: framewise displacement (FD), DVARS and
three region-wise global signals. FD and DVARS are calculated for each
functional run, both using their implementations in Nipype (following
the definitions by Power et al.)87. The three global signals are extracted
within the CSF, theWM, and the whole-brainmasks. Additionally, a set
of physiological regressors were extracted to allow for component-
based noise correction (CompCor, Behzadi et al.)88. Principal compo-
nents are estimated after high-pass filtering the preprocessed BOLD
time-series (using a discrete cosine filter with 128 s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical (aComp-
Cor). tCompCor components are then calculated from the top 5%
variable voxels within a mask covering the subcortical regions. This
subcortical mask is obtained by heavily eroding the brain mask, which
ensures it does not include cortical GM regions. For aCompCor,
components are calculated within the intersection of the aforemen-
tioned mask and the union of CSF and WM masks calculated in T1w
space, after their projection to the native space of each functional run
(using the inverse BOLD-to-T1w transformation). Components are also
calculated separately within the WM and CSF masks. For each Comp-
Cor decomposition, the k components with the largest singular values
are retained, such that the retained components’ time series are suf-
ficient to explain 50 percent of variance across the nuisance mask
(CSF, WM, combined, or temporal). The remaining components are
dropped from consideration. The head-motion estimates calculated in
the correction step were also placed within the corresponding con-
founds file. The confound time series derived from head motion esti-
mates andglobal signalswere expandedwith the inclusion of temporal
derivatives and quadratic terms for each (Satterthwaite et al. 2013).
Frames that exceeded a threshold of 0.5mm FD or 1.5 standardized
DVARS were annotated as motion outliers. All resamplings can be
performed with a single interpolation step by composing all the per-
tinent transformations (i.e. head-motion transform matrices,

susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric)
resamplings were performed using antsApplyTransforms (ANTs),
configured with Lanczos interpolation to minimize the smoothing
effects of other kernels (Lanczos)89. Non-gridded (surface) resam-
plings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham
et al.90, RRID:SCR_001362), mostly within the functional processing
workflow. For more details of the pipeline, see the section
corresponding to workflows in fMRIPrep’s documentation.

Copyright waiver. The above boilerplate text was automatically gen-
erated by fMRIPrep with the express intention that users should copy
and paste this text into their manuscripts unchanged. It is released
under the CC0 license.

fMRI analysis
After preprocessing, all fMRI analyseswereperformed in PythonandR.
Pattern similarity analyses were performed using custom code in
Python 3. Statistical analysis comparingpattern similarity values across
conditions, correlations between fMRI results and behavior, and
visualizations were performed using custom code in R version 4.4.0.

Localizer task analyses
We conducted GLMs predicting whole-brain univariate BOLD activity
from task and nuisance regressors from the Localizer Task using cus-
tom scripts in Python. For each participant, we first concatenated the
fMRI data across runs of the Localizer Task andmodeled BOLD activity
for each environment (1 to 16) with a boxcar regressor combined
across the cue, blank screen, and panorama periods. We also included
nuisance regressors in the samemodel (translation and rotation along
the X, Y, and Z axes and their derivatives, motion outliers as deter-
mined by fMRIprep, CSF, white matter, framewise displacement, and
discrete cosine-basis regressors for periods up to 125 s).

We next looked across the whole brain for voxels that showed
reliable, environment-specific patterns of activity during the Localizer
Task. We used an approach that identifies voxels that respond reliably
to different conditions across runs of an experiment91, heremeasuring
reliability across different participants92. For each voxel, we obtained a
16-element vector of beta weights from the whole-brain GLM, reflect-
ing the beta weight for each of the 16 environments for each partici-
pant (e.g., Participant #1 or P1). Next, we obtained the Pearson
correlation (r) between each participant’s 16-element vector in each
voxel and the averaged 16-element vector from the remaining parti-
cipants (e.g., P2-P32). Finally, we calculated an environment reliability
score by averaging the r values across all iterations of the held-out
participant (Fig. 3b). Voxels that had an r value of 0.1 or greater
(“environment-reliable voxels”) were then included in subsequent
steps (Fig. 3c). We selected 0.1 as our cutoff following the threshold
used in prior work to detect reliable across-participant
representations69,93. This threshold resulted in reasonable spatial cov-
erage while maintaining voxel reliability, including in our a priori
regions of interest91.

Conjunction ROI definition
Three a priori regions of interest (ROIs) were defined using
environment-reliable voxels (see above) within anatomical or func-
tional areas of interest. The V1-4 ROI was obtained from the prob-
abilistic human visual cortex atlas provided inWang et al.94 (threshold:
p =0.50). The hippocampus and insular cortex ROIswere both defined
from the Harvard-Oxford probabilistic atlas in FSL (threshold:
p =0.50). We resampled the three ROIs onto the same MNI grid as the
functional data (MNI152NLin2009cAsym), and then intersected them
with our map of environment-reliable voxels (r > 0.1, see description
above) to create conjunction ROIs in visual cortex, hippocampus, and
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insula (Fig. 3d). There were 2931 environment-reliable voxels in visual
cortex, 156 environment-reliable voxels in hippocampus, and 84
environment-reliable voxels in insula.We also includedPPA andRSC as
exploratory ROIs based on our searchlight analyses (see below). There
were 631 voxels in PPA and 888 in RSC.

We then obtained the spatial pattern of activity across voxels in
each conjunction ROI by averaging the pattern of activity for that
environment across all participants. These across-participant envir-
onment-specific activity patterns were then used as “template” activity
patterns for subsequent analyses. Because the Localizer Task did not
include a path cue (Green or Blue), participants should not have been
differentially and consistently activating one path as they viewed each
environment; thus, the pattern of activity obtained for each environ-
ment should be context-independent and should not prioritize past or
upcoming environments in a given context. Importantly, this approach
yielded the expected result of producing ROIs with environment-
specific patterns of activity: activity patterns for the same environment
weremore correlated than activity patterns for different environments
within each conjunction ROI (Fig. 3d). These environment-specific
patterns (hereafter referred to as “environment templates”) are a
necessary precursor for investigating prediction along each sequence
(see below).

Anticipation task analyses
We conducted GLMs predicting whole-brain univariate BOLD activity
from behavioral and nuisance regressors from the Anticipation Task
using Python. For each participant, we modeled BOLD activity con-
catenated across both runs of the Anticipation Task with separate
regressors for the cue, blank screen, and probe periods for each
environment inMapAandB (1 to 16) and for eachpath (GreenPath and
Blue Path). This resulted in a total of 32 task regressors for each phase
(cue, blank screen, probe) of the Anticipation Task (16 environments
across Map A and Map B, with each environment modeled separately
for the Green Path and the Blue Path). We also included nuisance
regressors in the samemodel (the same as those used for the Localizer
Task Analyses). For all subsequent analyses (except the searchlight
analysis), the resulting beta weights were examined within our
conjunction ROIs.

Asymmetrical gaussian analysis. To assess evidence for multivoxel
representations of temporal structure, we obtained the correlation
between (1) a given participant’s (e.g., P1) cue screen activity pattern
for each trial type (a given environment cued on a given path) in the
Anticipation Task and (2) the remaining participants’ (e.g., P2-P32)
averaged patterns of activity for each of the environment templates
from the correspondingmap (Fig. 4a). For example, if Participant 1 was
cued with environment one from Map A on the Green Path, we
obtained the correlation between: (1) Participant 1’s cue screen activity
pattern for that environment and path and (2) each environment
template (averaged across Participants 2-32) fromMap A. This yielded
eight separate pattern similarity values (because there are eight
environments per map) for each trial type (a given environment cued
on a given path). Because each participant had a different ordering of
environments, these across-participant templates cannot contain any
reliable information about the successors or predecessors of a given
environment for a given participant. We then ordered the resulting
pattern similarity values according to the cued Map and Path (in this
example, the Map A Green Path order), with the cue in the center
(Fig. 4a). Thus, successors following the cue would be to the right of
the center and predecessors would be to the left of the center.
Because, in an eight-environment map, four steps away is an equal
distance from the cue in both the past and the future, we included the
pattern similarity value four steps away from the cue in both the for-
ward and the backward direction. We also obtained the correlation
between (1) a given participant’s (e.g., P1) cue screen activity pattern

for each trial type (a given environment cued on a given path) in the
Anticipation Task and (2) the remaining participants’ (e.g., P2-P32)
averaged patterns of activity across all environment templates in the
different map (in this example, Map B). This single value served as the
different-map baseline.

Next, we fit an asymmetrical Gaussian curve to the resulting pat-
tern similarity values arranged on the order of the cued path.We chose
to use a Gaussian curve because we hypothesized that brain regions
would represent upcoming (or past) environments in a graded man-
ner, with stronger representations for nearby environments24. The
asymmetrical Gaussian has four parameters: amplitude, asymptote,
and forward and backwardwidths (σ) (Fig. 4b). The amplitude controls
the height of the peak of the Gaussian curve, and indicates the extent
to which a brain region is representing the cue environment presented
on the screen. The asymptote controls the vertical shift of theGaussian
curve. This asymptote was compared to a baseline value consisting of
pattern similarity between the cue and environments from the other
map (different-map baseline), because these other-map environments
are never accurate predictions from this cue. If the asymptote is lower
than this baseline, that would reflect relative suppression of some
environment templates in the current map (relative to environments
that are currently irrelevant). The widths (σ) control the slope of the
fall off from the amplitude to the asymptote. Wider Gaussians indicate
activation of environment patterns further away from the cue. Because
we fit an asymmetrical Gaussian, we obtained different widths in the
forward and backward direction; this allows brain regions to poten-
tially represent more environments in one direction (e.g., upcoming
environments) than another (e.g., past environments). This in turn
enables us todetect if somebrain areas anticipate the futurebutdonot
represent the past. We constrained the widths to be a maximum of 10
and applied L2 regularization to the amplitude and intercept (with
strength = 0.01) to ensure the model did not return uninterpretable
parameter values.

To test whether the parameters of the Gaussian curve were con-
sistent across participants, we fit the asymmetrical Gaussian curve on
all but one participant’s data (e.g. P2-32) and thenmeasured the sumof
squared errors (observed vs. predicted pattern similarity values) when
using this curve to predict the held-out participant’s data (e.g. P1). We
repeated this procedure for each choice of held-out participant to
obtain an average error value. We conducted two tests. First, we
compared the Gaussian fit to correctly ordered data and the Gaussian
fit to shuffled pattern similarity values, including pattern similarity to
the cue environment (“shuffled null including cue”). Second, we con-
ducted the same comparisonbut removedpattern similarity to the cue
environment from both the correctly ordered and shuffled data
(“shuffled null excluding cue”). In both cases, we fit the Gaussian to
shuffled pattern similarity values 10000 times and obtained the
goodness of fit each time to create a null distribution. The goodness of
fit for the correctly ordered data vs. null distributions were then
compared. If, for a given brain region, the Gaussian model provides a
betterfit to the correctly ordered vs. shuffleddata bothwhen the cue is
included and when it is excluded, that would indicate that the brain
region’s representations of both the cue andgraded representations of
nearby environments contribute to a significant Gaussian fit. If, how-
ever, the Gaussian model provides a better fit to the correctly ordered
vs. shuffled data only when the cue is included and not when it is
excluded, that would indicate that its Gaussian fit was driven by its
representation of the cue environment without any evidence for gra-
ded representations of the past or future.

We obtained a p-value by calculating the fraction of 10,000 shuf-
fles that produced Gaussian fits with lower error than the fit for the
correctly ordered data. We only proceeded with tests of the model
parameters (i.e., amplitude, asymptote, width) if the Gaussian fit for
the correctly ordered data vs. the shuffled null was statistically sig-
nificant. We also calculated R2 as 1 minus the sum of squared errors of
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theGaussianfit for the correctlyordereddatadividedby themean sum
of squared errors of the Gaussian fits for the shuffled data. R2 values
greater than 0 indicate smaller squared errors for the correctly
ordered data than the shuffled data.

We also performed statistical tests on the parameters of the
correctly ordered Gaussians. We compared the amplitude and
asymptote to a baseline which consisted of the pattern similarity
values between the cue screen activity pattern and the activity pat-
tern templates for the eight environments that were not in the cued
map (different-map baseline). We tested whether the amplitude was
significantly above the different-map baseline, and whether the
asymptote was significantly below the different-map baseline, using
one-sample t-tests across participants. A brain region with an
asymptote that is significantly lower than the different-map baseline
would be interpreted as having relatively suppressed representations
of those environments, compared to our baseline condition. We also
tested whether the widths (σ) differed by brain region (visual cortex
vs hippocampus), direction (forward vs backward), and their inter-
action using the following R-based formula (where “participant”
indicates participant number):

lmerðwidth � region*direction+ ð1jparticipantÞ, dataÞ ð5Þ

Finally, to testwhether theGaussian representationswere context
dependent, we repeated the sameGaussian fitting procedure as above
but with the pattern similarity values arranged on the order of the
uncued path. Importantly, we only tested whether the Gaussian fit for
the uncued path was significantly better than the shuffled null
excluding the cue because 1) the cue environmentwas the same across
paths and 2) this comparison specifically tests evidence for graded
representations of the past and future. We also directly assessed
whether the cued order Gaussian fit was significantly better than the
uncued order Gaussian fit. We computed the difference between the
sum of squared errors for 1) the correctly ordered data along the cued
path vs the correctly ordered data along the uncued path, excluding
the cue environment from both and 2) the same cued vs uncued
comparison for each of the shuffled nulls. We then tested whether the
difference in fit for the cued vs uncued path in the real (unshuffled)
data was larger than the difference in fit for the cued vs uncued path in
the shufflednulls. This allowedus to statistically testwhether therewas
more evidence for graded representations of the past and future along
the cued vs. uncued path in the absence of similarity to the cue
environment.

Searchlight. We conducted a whole-brain searchlight analysis with
custom Python code to test whether brain regions beyond our ROIs
represented temporal structure in the hypothesized asymmetrical
Guassian format.We looked for significant Gaussian representations in
cubes with a side length of 7 voxels, moved throughout the whole
brain volume with a step size of 2 voxels. We included only
environment-reliable voxelswithin each cube andonlyproceededwith
the analysis of a cube if it contained at least 64 environment-reliable
voxels. The parameters of fitted Gaussians within each searchlight,
along with the goodness of fit, were assigned to each voxel in the
searchlight. For voxels that were included in more than one search-
light, the final Gaussian parameters and goodness-of-fit were obtained
by averaging the results across all the searchlights in which the voxel
was included.

To determine which voxels exhibited significant Gaussian
representations across participants, we first obtained a measure of
goodness of fit by dividing the squared errors of the correctly
ordered Gaussian by the average of the squared errors of the per-
muted Gaussians and then subtracting the resulting value from 1 for
each voxel included in the searchlight for each participant. Numbers
above 0 indicate better fits to the correctly ordered vs permuted

data. We then statistically tested whether the goodness of fit values
were greater than 0 in each voxel, using FSL’s randomize function
with threshold free cluster enhancement, which generates null dis-
tributions using 10,000 permutations and performs a one-sample t-
test while enhancing clusters of significant voxels95. We then cor-
rected for multiple comparisons using the family-wise error rate
correction (p < 0.05).

To determine whether Gaussian widths (σ) were organized
hierarchically within brain regions, we first averaged the forward and
backward widths for each voxel for each participant. We opted to
compute the average of the forward and backward widths because
we did not find evidence for directional asymmetry in any brain
region, in both our ROI and searchlight analyses. Next, we deter-
mined whether the averaged widths became increasingly wider in
more anterior, compared to posterior, voxels in the para-
hippocampal place area (PPA) and the retrosplenial cortex (RSC). We
created PPA and RSC ROIs using pre-defined anatomical ROIs96,
which we then resampled onto the same MNI grid as the functional
data (MNI152NLin2009cAsym) and intersected with our map of
environment-reliable voxels (r > 0.1). We chose PPA and RSC because
(1) the searchlight revealed significant Gaussian representations in
the majority of voxels in these regions and (2) they have previously
been implicated in both scene perception and memory40,42. In each
region, for each participant, we obtained the Spearman rank-order
correlation between the averaged forward and backward widths (σ)
and the y coordinate (indicating a voxel’s position on the posterior-
anterior axis) across voxels. We then determined whether the cor-
relation was significant at the group level by comparing the
participant-specific r values to 0 using a one-sample t-test. A sig-
nificantly positive r value would indicate that Gaussian curves
become increasingly wider in successively anterior aspects of
regions. Additionally, we repeated the same analysis as above
assessing the correlation between width and y-coordinate while
controlling for the amplitude of the Gaussian fit.

Finally, we determined whether there was a timescale hierarchy
across regions in visual cortex, with average widths becoming
increasingly wider in later visual cortex regions.We first computed the
average width across voxels separately for V1, V2, V3, V4, and PPA for
each participant. We then ordered each visual region based on their
location along the visual hierarchy (V1-V4, then PPA). For each parti-
cipant, we then obtained the Spearman rank-order correlation
between the average forward andbackwardwidths (σ) and the region’s
location along the visual hierarchy. We determined whether the cor-
relation was significant at the group level by comparing the
participant-specific r values to 0 using a one-sample t-test. A sig-
nificantly positive r value would indicate that Gaussian curves become
increasingly wider in successively later visual cortex regions.

Relationship to behavior. We determined whether an individual’s
asymptote from their Gaussian model, indicating suppression of
environments not captured by the Gaussian’s width, was related to
response time costs for further environments. We also tested whether
an individual’s forward and backwardwidth from their Gaussianmodel
was related to response time costs. Response time costs were quanti-
fied with participant-specific regressions that predicted response
time as a function of steps into the future. We then performed an
individual differences analysis by obtaining the Spearman rank-order
correlation between participants’ response time costs and their
asymptotes in (1) the hippocampus and (2) the visual cortex. We
repeated this analysis for the forward and backward width instead of
the asymptote.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The data presented in figures in this study are provided in the source
data file. fMRI data used in this study are available in the openneuro
database under accession code https://openneuro.org/datasets/
ds005125. Source data are provided with this paper.

Code availability
Code to reproduce all figures and statistical analyses in themanuscript
and supplement is available at https://github.com/hannahtarder-stoll/
predNav.

References
1. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55,

189–208 (1948).
2. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippo-

campus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).
3. Behrens, T. E. J. et al. What is a cognitive map? organizing knowl-

edge for flexible behavior. Neuron 100, 490–509 (2018).
4. Momennejad, I. Learning structures: predictive representations,

replay, and generalization. Curr. Opin. Behav. Sci. 32,
155–166 (2020).

5. Buckner, R. L. The role of the hippocampus in prediction and ima-
gination. Annu. Rev. Psychol. 61, 27–48 (2010).

6. Clark, A. Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

7. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B
Biol. Sci. 360, 815–836 (2005).

8. Summerfield, C. & Egner, T. Expectation (and attention) in visual
cognition. Trends Cogn. Sci. 13, 403–409 (2009).

9. Lisman, J. & Redish, A. D. Prediction, sequences and the hippo-
campus. Philos. Trans. R. Soc. B Biol. Sci. 364, 1193–1201 (2009).

10. Ouden, H. E. M., den, Daunizeau, J., Roiser, J., Friston, K. J. & Ste-
phan, K. E. Striatal Prediction Error Modulates Cortical Coupling. J.
Neurosci. 30, 3210–3219 (2010).

11. De Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape
perception? Trends Cogn. Sci. 22, 764–779 (2018).

12. Lee, C. S., Aly, M. & Baldassano, C. Anticipation of temporally
structured events in the brain. eLife 10, e64972 (2021).

13. Kok, P., Jehee, J. F. M. & de Lange, F. P. Less is more: expectation
sharpens representations in the primary visual cortex. Neuron 75,
265–270 (2012).

14. Kok, P., Failing, M. F. & de Lange, F. P. Prior expectations evoke
stimulus templates in the primary visual cortex. J. Cogn. Neurosci.
26, 1546–1554 (2014).

15. Gavornik, J. P. & Bear, M. F. Learned spatiotemporal sequence
recognition and prediction in primary visual cortex. Nat. Neurosci.
17, 732–737 (2014).

16. Hindy, N. C., Ng, F. Y. & Turk-Browne, N. B. Linking pattern com-
pletion in the hippocampus to predictive coding in visual cortex.
Nat. Neurosci. 19, 665–667 (2016).

17. Schapiro, A.C., Kustner, L. V.&Turk-Browne,N. B. Shapingof object
representations in the human medial temporal lobe based on
temporal regularities. Curr. Biol. 22, 1622–1627 (2012).

18. Davachi, L. & DuBrow, S. How the hippocampus preserves order:
the role of prediction and context. Trends Cogn. Sci. 19,
92–99 (2015).

19. Brown, T. I. et al. Prospective representation of navigational goals in
the human hippocampus. Science 352, 1323–1326 (2016).

20. Kok, P. &Turk-Browne,N. B. Associative predictionof visual shape in
the hippocampus. J. Neurosci. 38, 6888–6899 (2018).

21. Aitken, F. & Kok, P. Hippocampal representations switch fromerrors
to predictions during acquisition of predictive associations. Nat.
Commun. 13, 3294 (2022).

22. Brunec, I. K. & Momennejad, I. Predictive representations in hippo-
campal and prefrontal hierarchies. J. Neurosci. 42, 299–312 (2022).

23. Singer, T., Critchley, H. D. & Preuschoff, K. A common role of insula
in feelings, empathy and uncertainty. Trends Cogn. Sci. 13,
334–340 (2009).

24. Momennejad, I. & Howard, M. W. Predicting the future with multi-
scale successor representations. 449470 Preprint at https://doi.
org/10.1101/449470 (2018).

25. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory:
memory as an integral component of information processing.
Trends Cogn. Sci. 19, 304–313 (2015).

26. Hasson, U., Yang, E., Vallines, I., Heeger,D. J. & Rubin, N. A hierarchy
of temporal receptive windows in human cortex. J. Neurosci. 28,
2539–2550 (2008).

27. Lerner, Y., Honey, C. J., Silbert, L. J. & Hasson, U. Topographic
mapping of a hierarchy of temporal receptive windows using a
narrated story. J. Neurosci. 31, 2906–2915 (2011).

28. Baldassano, C. et al. Discovering event structure in continuous
narrative perception and memory. Neuron 95, 709–721.e5 (2017).

29. Aly, M., Chen, J., Turk-Browne, N. B. & Hasson, U. Learning natur-
alistic temporal structure in the posterior medial network. J. Cogn.
Neurosci. 30, 1345–1365 (2018).

30. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequen-
ces in hippocampal place cells during the awake state.Nature 440,
680–683 (2006).

31. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell
sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

32. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hip-
pocampal sharp-wave ripples support spatial memory. Science
336, 1454–1458 (2012).

33. Ólafsdóttir, H. F., Bush, D. & Barry, C. The role of hippocampal
replay in memory and planning. Curr. Biol. 28, R37–R50 (2018).

34. Wimmer, G. E., Liu, Y., Vehar, N., Behrens, T. E. J. & Dolan, R. J.
Episodicmemory retrieval success is associatedwith rapid replayof
episode content. Nat. Neurosci. 23, 1025–1033 (2020).

35. Montagrin, A. et al. The hippocampus dissociates present frompast
and future goals. Nat. Commun. 15, 4815 (2024).

36. Manning, J. R., Polyn, S. M., Baltuch, G. H., Litt, B. & Kahana, M. J.
Oscillatory patterns in temporal lobe reveal context reinstatement
during memory search. Proc. Natl Acad. Sci. USA 108,
12893–12897 (2011).

37. Sederberg, P. B., Howard, M. W. & Kahana, M. J. A context-based
theory of recency and contiguity in free recall. Psychol. Rev. 115,
893–912 (2008).

38. Crivelli-Decker, J. et al. Goal-oriented representations in the human
hippocampus during planning and navigation. Nat. Commun. 14,
2946 (2023).

39. Tarder-Stoll, H., Baldassano, C. & Aly, M. Consolidation enhances
sequential multistep anticipation but diminishes access to per-
ceptual features. Psychological Science 35, 1178–1199 (2024).

40. Epstein, R. A. Parahippocampal and retrosplenial contributions to
human spatial navigation. Trends Cogn. Sci. 12, 388–396 (2008).

41. Steel, A., Billings, M. M., Silson, E. H. & Robertson, C. E. A network
linking scene perception and spatial memory systems in posterior
cerebral cortex. Nat. Commun. 12, 2632 (2021).

42. Baldassano, C., Beck, D. M. & Fei-Fei, L. Differential connectivity
within the Parahippocampal Place Area. NeuroImage 75,
228–237 (2013).

43. Silson, E. H. et al. A posterior–anterior distinction between scene
perception and scene construction in human medial parietal cor-
tex. J. Neurosci. 39, 705–717 (2019).

44. Himberger, K. D., Chien, H.-Y. & Honey, C. J. Principles of temporal
processing across the cortical hierarchy. Neuroscience 389,
161–174 (2018).

45. Dayan, P. Improving generalization for temporal difference learn-
ing: the successor representation. Neural Comput 5, 613–624
(1993).

Article https://doi.org/10.1038/s41467-024-53293-3

Nature Communications |         (2024) 15:9094 17

https://openneuro.org/datasets/ds005125
https://openneuro.org/datasets/ds005125
https://github.com/hannahtarder-stoll/predNav
https://github.com/hannahtarder-stoll/predNav
https://doi.org/10.1101/449470
https://doi.org/10.1101/449470
www.nature.com/naturecommunications


46. Momennejad, I. et al. The successor representation in human rein-
forcement learning. Nat. Hum. Behav. 1, 680–692 (2017).

47. Ekman,M., Kusch, S. &deLange, F. P. Successor-like representation
guides the prediction of future events in human visual cortex and
hippocampus. eLife 12, e78904 (2023).

48. Gershman, S. J. The successor representation: its computational
logic and neural substrates. J. Neurosci. J. Soc. Neurosci. 38,
7193–7200 (2018).

49. Deuker, L., Bellmund, J. L., Navarro Schröder, T. & Doeller, C. F. An
event map of memory space in the hippocampus. eLife 5,
e16534 (2016).

50. Fernandez, C., Jiang, J., Wang, S.-F., Choi, H. L. & Wagner, A. D.
Representational integration and differentiation in the human hip-
pocampus following goal-directed navigation. eLife 12,
e80281 (2023).

51. Michelmann, S., Hasson, U. & Norman, K. A. Evidence that event
boundaries are access points formemory retrieval. Psychol. Sci.34,
326–344 (2023).

52. ElliottWimmer, G. & Büchel, C. Learning of distant state predictions
by the orbitofrontal cortex in humans. Nat. Commun. 10,
2554 (2019).

53. Turk-Browne, N. B., Simon, M. G. & Sederberg, P. B. Scene repre-
sentations inparahippocampal cortex dependon temporal context.
J. Neurosci. 32, 7202–7207 (2012).

54. Aminoff, E., Gronau, N. & Bar, M. The parahippocampal cortex
mediates spatial and nonspatial associations. Cereb. Cortex 17,
1493–1503 (2007).

55. Bar, M., Aminoff, E. & Schacter, D. L. Scenes unseen: the
parahippocampal cortex intrinsically subserves contextual
associations, not scenes or places per se. J. Neurosci. 28,
8539–8544 (2008).

56. Aminoff, E. M., Kveraga, K. & Bar, M. The role of the para-
hippocampal cortex in cognition. Trends Cogn. Sci. 17,
379–390 (2013).

57. Marchette, S. A., Vass, L. K., Ryan, J. & Epstein, R. A. Outside looking
in: landmark generalization in the human navigational system. J.
Neurosci. 35, 14896–14908 (2015).

58. Koch, G. E., Paulus, J. P. & Coutanche, M. N. Neural patterns are
more similar across individuals during successful memory encod-
ing than during failed memory encoding. Cereb. Cortex 30,
3872–3883 (2020).

59. Chen, H.-T., Manning, J. R. & van derMeer,M. A. A. Between-subject
prediction reveals a shared representational geometry in the rodent
hippocampus. Curr. Biol. 31, 4293–4304.e5 (2021).

60. Aly, M. & Turk-Browne, N. B. Attention promotes episodic encoding
by stabilizing hippocampal representations. Proc. Natl Acad. Sci.
USA 113, E420–E429 (2016).

61. Aly, M. & Turk-Browne, N. B. Attention stabilizes representations in
the human hippocampus. Cereb. Cortex 26, 783–796 (2016).

62. Günseli, E. & Aly, M. Preparation for upcoming attentional states in
the hippocampus and medial prefrontal cortex. eLife 9,
e53191 (2020).

63. Lee, A. C., Yeung, L.-K. & Barense, M. D. The hippocampus and
visual perception. Front. Hum. Neurosci. 6, https://doi.org/10.
3389/fnhum.2012.00091 (2012).

64. McCormick, C., Dalton, M. A., Zeidman, P. & Maguire, E. A. Char-
acterising the hippocampal response to perception, construction
and complexity. Cortex 137, 1–17 (2021).

65. Ruiz, N. A., Meager, M. R., Agarwal, S. & Aly,M. Themedial temporal
lobe is critical for spatial relational perception. J. Cogn. Neurosci.
32, 1780–1795 (2020).

66. Leferink, C. A. et al. Organization of pRF size along the AP axis of the
hippocampus and adjacent medial temporal cortex is related to
specialization for scenes versus faces. Cereb. Cortex 34,
bhad429 (2024).

67. Knapen, T. Topographic connectivity reveals task-dependent reti-
notopic processing throughout the human brain. Proc. Natl Acad.
Sci. USA 118, e2017032118 (2021).

68. Silson, E. H., Zeidman, P., Knapen, T. & Baker, C. I. Representation of
contralateral visual space in the human hippocampus. J. Neurosci.
41, 2382–2392 (2021).

69. Chen, J. et al. Shared memories reveal shared structure in neural
activity across individuals. Nat. Neurosci. 20, 115–125 (2017).

70. Favila, S. E. & Aly, M. Hippocampal mechanisms resolve competi-
tion inmemory and perception. bioRxiv 2023.10.09.561548 https://
doi.org/10.1101/2023.10.09.561548 (2023).

71. DuBrow, S. & Davachi, L. Temporal memory is shaped by encoding
stability and intervening item reactivation. J. Neurosci. 34,
13998–14005 (2014).

72. Clewett, D. & Davachi, L. The ebb and flow of experience deter-
mines the temporal structure ofmemory.Curr. Opin. Behav. Sci. 17,
186–193 (2017).

73. Peirce, J. et al. PsychoPy2: experiments in behavior made easy.
Behav. Res. Methods 51, 195–203 (2019).

74. Alsbury-Nealy, K. et al. OpenMaze: An open-source toolbox for
creating virtual navigation experiments. Behav. Res. Methods 54,
1374–1387 (2022).

75. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-
Effects Models using lme4. Preprint at https://doi.org/10.48550/
arXiv.1406.5823 (2014).

76. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for
functional MRI. Nat. Methods 16, 111–116 (2019).

77. Esteban, O. et al. nipy/nipype: 1.8.3. Zenodo https://doi.org/10.
5281/zenodo.6834519 (2022).

78. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible
neuroimaging data processing framework in python. Front. Neu-
roinformatics 5, (2011).

79. Tustison, N. J. et al. N4ITK: improved N3 Bias correction. IEEE Trans.
Med. Imaging 29, 1310–1320 (2010).

80. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric
diffeomorphic image registration with cross-correlation: Evaluating
automated labeling of elderly and neurodegenerative brain. Med.
Image Anal. 12, 26–41 (2008).

81. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images
through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans.Med. Imaging20, 45–57 (2001).

82. Dale, A.M., Fischl, B. & Sereno,M. I. Cortical surface-based analysis:
i. segmentation and surface reconstruction. NeuroImage 9,
179–194 (1999).

83. Klein, A. et al. Mindboggling morphometry of human brains. PLOS
Comput. Biol. 13, e1005350 (2017).

84. Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased
nonlinear average age-appropriate brain templates from birth to
adulthood. NeuroImage 47, S102 (2009).

85. Glasser, M. F. et al. The minimal preprocessing pipelines for the
human connectome project. NeuroImage 80, 105–124 (2013).

86. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved opti-
mization for the robust and accurate linear registration and motion
correction of brain images. NeuroImage 17, 825–841 (2002).

87. Power, J. D. et al. Methods to detect, characterize, and remove
motion artifact in resting state fMRI. NeuroImage 84,
320–341 (2014).

88. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise
correction method (CompCor) for BOLD and perfusion based fMRI.
NeuroImage 37, 90–101 (2007).

89. Lanczos, C. Evaluation of noisy data. J. Soc. Ind. Appl. Math. Ser. B
Numer. Anal. 1, 76–85 (1964).

90. Abraham, A. et al. Machine learning for neuroimaging with
scikit-learn. Front. Neuroinformatics 8, 10.3389/fninf.2014.00014
(2014).

Article https://doi.org/10.1038/s41467-024-53293-3

Nature Communications |         (2024) 15:9094 18

https://doi.org/10.3389/fnhum.2012.00091
https://doi.org/10.3389/fnhum.2012.00091
https://doi.org/10.1101/2023.10.09.561548
https://doi.org/10.1101/2023.10.09.561548
https://doi.org/10.48550/arXiv.1406.5823
https://doi.org/10.48550/arXiv.1406.5823
https://doi.org/10.5281/zenodo.6834519
https://doi.org/10.5281/zenodo.6834519
www.nature.com/naturecommunications


91. Tarhan, L. & Konkle, T. Reliability-based voxel selection. Neuro-
Image 207, 116350 (2020).

92. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject
synchronization of cortical activity during natural vision. Science
303, 1634–1640 (2004).

93. Simony, E. et al. Dynamic reconfiguration of the default mode
network during narrative comprehension. Nat. Commun. 7,
12141 (2016).

94. Wang, L., Mruczek, R. E. B., Arcaro, M. J. & Kastner, S. Probabilistic
maps of visual topography in human cortex. Cereb. Cortex 25,
3911–3931 (2015).

95. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement:
addressing problems of smoothing, threshold dependence and
localisation in cluster inference. NeuroImage 44, 83–98 (2009).

96. Julian, J. B., Fedorenko, E., Webster, J. & Kanwisher, N. An
algorithmic method for functionally defining regions of
interest in the ventral visual pathway. NeuroImage 60,
2357–2364 (2012).

Acknowledgements
This work was funded by a National Institutes of Health Research Project
Grant (R01EY034436) and a Zuckerman Institute Seed Grant for MR
Studies (CU-ZI-MR-S-0016) to M.A. and C.B. We would like to thank the
Alyssano Group for helpful advice on this project.

Author contributions
Conceptualization, H.T.S., C.B., andM.A.; Methodology, H.T.S., C.B., and
M.A.; Software, H.T.S.; Formal Analysis, H.T.S.; Investigation, H.T.S.;
Writing –Original Draft, H.T.S.; Writing – Review& Editing, C.B. andM.A.;
Visualization, H.T.S., C.B., and M.A.; Supervision, C.B. and M.A.; Funding
Acquisition, C.B. and M.A.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-53293-3.

Correspondence and requests for materials should be addressed to
Hannah Tarder-Stoll.

Peer review information Nature Communications thanks Linda Geerligs
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-53293-3

Nature Communications |         (2024) 15:9094 19

https://doi.org/10.1038/s41467-024-53293-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	The brain hierarchically represents the past and future during multistep anticipation
	Results
	Anticipation Task Performance
	Bidirectional and graded representations of temporal structure in hippocampus
	Hippocampal suppression of environment representations predicts response time costs
	Temporal structure is hierarchically organized within and across visual regions

	Discussion
	Methods
	Participants
	Overview
	Stimuli and sequence structure
	Procedure
	Training phase
	Sequence refresher task
	Anticipation task
	Integration task
	Localizer task
	Behavioral Analysis

	MRI acquisition
	Preprocessing
	Anatomical data preprocessing
	Functional data preprocessing
	Copyright waiver

	fMRI analysis
	Localizer task analyses
	Conjunction ROI definition
	Anticipation task analyses
	Asymmetrical gaussian analysis
	Searchlight
	Relationship to behavior

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




